organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yan-Qiong Sun, Jie Zhang and Guo-Yu Yang*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: ygy@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.054 wR factor = 0.148 Data-to-parameter ratio = 9.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Guanidinium pyromellitate

The title compound, guanidinium pyromellitate, $2[C(NH_2)_3]^+ \cdot (C_{10}H_4O_8)^{2-}$ or $2 CH_6N_3^+ \cdot C_{10}H_4O_8^{2-}$, comprises a 1,2,4,5-benzenetetracarboxylate anion and two guanidinium cations. The carboxylate anions lie on centers of inversion and involve intramolecular O-H···O hydrogen bonds. The cations and anions are linked by strong three-dimensional N-H···O hydrogen bonds and π - π -stacking interactions into a three-dimensional framework containing a one-dimensional channel along the diagonal of the *ca* plane. The N-H···O hydrogen-bond distances range from 2.899 (6) to 3.068 (5) Å.

Received 8 July 2002 Accepted 16 July 2002 Online 19 July 2002

Comment

Pyromellitic acid is symmetric and has been extensively employed as a building block in coordination chemistry (Cao et al., 2002; Chu et al., 2001; Cheng et al., 2000; Poleti & Karanovic, 1989; Rochon & Massarweh, 2001). By contrast, its use in supramolecular chemistry has hardly been explored. Only five types of supramolecules of this acid have been reported. They are the adducts with 2,2'-bipyridyl [C₁₀H₈- $N_2H^{+} \cdot 0.5[C_6H_2(COO)_4H_2]^{2-} \cdot 0.5[C_6H_2(COOH)_4]$ (Mrvos-Sermek et al., 1996); with 4,4'-bipyridyl $2(C_{10}H_9$ - N_2)⁺·($C_{10}H_4O_8$)²⁻ (Lough *et al.*, 2000); with hexamethylenetetramine $2(C_6H_{13}N_4)^+ \cdot (C_{10}H_4O_8)^{2-}$ (Lough *et al.*, 2000); with guanidine and hydrogen peroxide [C(NH₂)₃]₄·C₁₀H₂-(COO)₄·3H₂O·H₂O₂ (Adams & Ramdas, 1978); and with 3,6,9,16,19,22-hexazatricyclotriaconta-11,13,24,26(1),27,29hexaene $(C_{24}H_{42}N_6)^{4+} \cdot (C_{10}H_2O_8)^{4-} \cdot 6H_2O$ (Zhu et al., 2002), respectively. We report here the structure of a new adduct, built from the pyromellitate anion and the guanidinium cation, whose supramolecular structure is wholly different from that of $[C(NH_2)_3]_4 \cdot C_{10}H_2(COO)_4 \cdot 3H_2O \cdot H_2O_2$.

The title compound, (I), is composed of a 1,2,4,5-benzenetetracarboxylate anion and two guanidinium cations derived from the decomposition of dicyandiamide. The pyromellitate anion lies on a center of inversion. All H atoms are fully ordered. Each cation acts as a donor of hard hydrogen bonds,

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

The molecular components of the title compound, with the atomnumbering scheme. Displacement ellipsoids are shown at the 30% probability level.

Packing diagram viewed down the [101] diagonal of the unit cell, showing the hydrogen-bond interactions.

of the type N-H...O, and each anion acts as acceptor of bonds of the type $N-H\cdots O$ and $O-H\cdots O$. The $O-H\cdots O$ hydrogen bonds are all intramolecular and there are no O- $H \cdots N$ hydrogen bonds. Every anion is linked to six cations by $12 \text{ N}-\text{H} \cdot \cdot \cdot \text{O}$ hydrogen bonds, while every cation is linked to three anions by six N-H···O hydrogen bonds. The anions and the cations are connected to each other by six different $N-H \cdots O$ hydrogen bonds, whose distances range from 2.899 (6) to 3.068 (5) Å; these form a three-dimensional framework containing a one-dimensional channel along the diagonal of the *ca* plane. The channel size is $16.428(5) \times 10^{-10}$ 3.795 (5) Å, and is composed of four cations and four anions.

In addition to the hydrogen bonds, the supramolecular structure is stabilized by aromatic π - π -stacking interactions. Within the network, the aryl ring at (x, y, z) is parallel to the aryl ring at (1 + x, y, z) and the perpendicular distance between the ring planes is 3.731 (9) Å. The π - π -stacking interactions generate a one-dimensional network along the a axis.

Experimental

A mixture of pyromellitic dianhydride (0.109 g, 0.5 mmol), dicyandiamide (0.042 g, 0.5 mmol) and H₂O (10 ml, 567.7 mmol), in a ratio of ca 1:1:1135, was sealed in a 35 ml stainless-steel reactor with a Teflon lining and was heated at 433 K for 72 h. After cooling, the mixture was then filtered and single colorless crystals were obtained by slow evaporation of the filtrate at room temperature.

Crystal data

$2CH_6N_3^+ \cdot C_{10}H_4O_8^{2-}$	$D_x = 1.583 \text{ Mg m}^{-3}$
$M_r = 372.31$	Mo K α radiation
Monoclinic, $P2_1/n$	Cell parameters from 172
a = 3.7949 (2) Å	reflections
b = 20.1494 (9) Å	$\theta = 2.0-25.1^{\circ}$
c = 10.3903(1) Å	$\mu = 0.14 \text{ mm}^{-1}$
$\beta = 100.501 \ (3)^{\circ}$	T = 293 (2) K
$V = 781.19 (5) \text{ Å}^3$	Column, colorless
<i>Z</i> = 2	$0.36 \times 0.30 \times 0.18 \text{ mm}$

Data collection

Siemems SMART CCD	1372 independent reflections
diffractometer	1132 reflections with $I > 2\sigma(I)$
ω and ω scans	$R_{\rm int} = 0.029$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.1^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -4 \rightarrow 4$
$T_{\min} = 0.953, T_{\max} = 0.976$	$k = -23 \rightarrow 21$
2373 measured reflections	$l = -4 \rightarrow 12$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0666P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.054$ wR(F²) = 0.148 + 0.7112P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ S = 1.04 $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ 1372 reflections 150 parameters $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ All H-atom parameters refined

Table 1

Selected g	geometric	parameters	(À,	°).
------------	-----------	------------	-----	-----

1.278 (3)	C2-C4 ⁱ	1.416 (3)
1.220 (3)	C3-C4	1.396 (3)
1.219 (3)	C4-C5	1.519 (3)
1.279 (3)	C6-N2	1.319 (3)
1.529 (3)	C6-N1	1.324 (4)
1.388 (3)	C6-N3	1.322 (4)
121.3 (2)	C3-C4-C5	113.8 (2)
119.0 (2)	$C2^{i}-C4-C5$	129.1 (2)
119.6 (2)	O3-C5-O4	120.7 (2)
117.7 (2)	O3-C5-C4	120.3 (2)
113.8 (2)	O4-C5-C4	119.0 (2)
128.5 (2)	N2-C6-N1	120.2 (3)
125.2 (2)	N2-C6-N3	119.1 (3)
117.1 (2)	N1-C6-N3	120.6 (3)
	1.278 (3) 1.220 (3) 1.219 (3) 1.279 (3) 1.529 (3) 1.388 (3) 121.3 (2) 119.0 (2) 119.6 (2) 117.7 (2) 113.8 (2) 128.5 (2) 125.2 (2) 117.1 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry code: (i) -1 - x, 1 - y, -z.

Table 2 Hydrogen-bonding geometry (Å, $^\circ).$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H6···O4	0.89 (3)	2.02 (3)	2.899 (3)	167.0 (3)
$N2-H5\cdots O2^{i}$	0.82(4)	2.18 (4)	2.994 (3)	169.0 (6)
$N1 - H4 \cdot \cdot \cdot O3$	0.90(3)	2.19 (3)	3.067 (4)	166.0 (3)
$N3-H3\cdots O2^{ii}$	0.86(4)	2.15 (4)	2.916 (4)	147.0 (2)
$N3-H2 \cdot \cdot \cdot O1^i$	0.90(4)	2.02 (4)	2.913 (3)	177.2 (9)
$N1 - H1 \cdots O3^{ii}$	0.90(4)	2.13 (4)	2.970 (3)	153.8 (9)
$O4\!-\!H8\!\cdot\cdot\cdot\!O1^{iii}$	1.19 (4)	1.19 (4)	2.377 (3)	175.6 (4)
Symmetry codes: (i)	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - x$	z; (ii) $1 - x, 1 - y$	y, 1-z; (iii) $-1-$	-x, 1-y, -z.

All H atoms were located in a difference Fourier map and their positions and isotropic displacement parameters were refined.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SMART*; data reduction: *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Ministry of Finance of China, the National Science Foundation of China (grant No. 20171045) and the Talents Program of the Chinese Academy of Sciences.

References

- Adams, J. M. & Ramdas, V. (1978). Acta Cryst. B34, 2781-2785.
- Bruker. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker. (1999). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cao, R., Sun, D. F., Liang, Y. C., Hong, M. C., Tatsumi, K. & Shi, Q. (2002). *Inorg. Chem.* 41, 2087–2094.
- Cheng, D. P., Zheng, Y. Q., Lin, J. L., Xu, D. J. & Xu, Y. Z. (2000). Acta Cryst. C56, 523–524.
- Chu, D. Q., Xu, J. Q., Duan, L. M., Wang, T. G., Tang, A. Q. & Ye, L. (2001). *Eur. J. Inorg. Chem.* pp. 1135–1137.
- Lough, A. J., Wheatley, P. S., Ferguson, G. & Glidewell, C. (2000). *Acta Cryst.* B56, 261–272.
- Mrvos-Sermek, D., Popovic, Z. & Matkovic Calogovic, D. (1996). Acta Cryst. C52, 2538–2541.
- Poleti, D. & Karanovic, Lj. (1989). Acta Cryst. C45, 1716–1718.
- Rochon, F. D. & Massarweh, G. (2001). Inorg. Chim. Acta, 314, 163-171.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Zhu, L. G., Ellern, A. M. & Kostic, N. M. (2002). Acta Cryst. C58, o129-o130.